Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 13: 1037214, 2022.
Article in English | MEDLINE | ID: covidwho-2198882

ABSTRACT

Introduction: Given the varying severity of coronavirus disease 2019 (COVID-19) and the rapid spread of Severe-Acute-Respiratory-Syndrome-Corona-Virus-2 (SARS-CoV-2), vaccine-mediated protection of particularly vulnerable individuals has gained increasing attention during the course of the pandemic. Methods: We performed a 1-year follow-up study of 51 ocrelizumab-treated patients with multiple sclerosis (OCR-pwMS) who received COVID-19 vaccination in 2021. We retrospectively identified 37 additional OCR-pwMS, 42 pwMS receiving natalizumab, 27 pwMS receiving sphingosine 1-phosphate receptor modulators, 59 pwMS without a disease-modifying therapy, and 61 controls without MS (HC). In OCR-pwMS, anti-SARS-CoV-2(S)-antibody titers were measured prior to the first and after the second, third, and fourth vaccine doses (pv2/3/4). The SARS-CoV-2-specific T cell response was analyzed pv2. SARS-CoV-2 infection status, COVID-19 disease severity, and vaccination-related adverse events were assessed in all pwMS and HC. Results: We found a pronounced and increasing anti-SARS-CoV-2(S)-antibody response after COVID-19 booster vaccinations in OCR-pwMS (pv2: 30.4%, pv3: 56.5%, and pv4 90.0% were antibody positive). More than one third of OCR-pwMS without detectable antibodies pv2 developed positive antibodies pv3. 23.5% of OCR-pwMS had a confirmed SARS-CoV-2 infection, of which 84.2% were symptomatic. Infection rates were comparable between OCR-pwMS and control groups. None of the pwMS had severe COVID-19. An attenuated humoral immune response was not associated with a higher risk of SARS-CoV-2 infection. Discussion: Additional COVID-19 vaccinations can boost the humoral immune response in OCR-pwMS and improve clinical protection against COVID-19. Vaccines effectively protect even OCR-pwMS without a detectable COVID-19 specific humoral immune response, indicating compensatory, e.g., T cell-mediated immunological mechanisms.


Subject(s)
COVID-19 , Multiple Sclerosis , Vaccines , Humans , COVID-19/prevention & control , Follow-Up Studies , Multiple Sclerosis/drug therapy , SARS-CoV-2 , COVID-19 Vaccines , Retrospective Studies , Antibodies, Monoclonal, Humanized/therapeutic use
2.
J Neurol Neurosurg Psychiatry ; 93(9): 978-985, 2022 09.
Article in English | MEDLINE | ID: covidwho-1701963

ABSTRACT

BACKGROUND: Vaccination has proven to be effective in preventing SARS-CoV-2 transmission and severe disease courses. However, immunocompromised patients have not been included in clinical trials and real-world clinical data point to an attenuated immune response to SARS-CoV-2 vaccines among patients with multiple sclerosis (MS) receiving immunomodulatory therapies. METHODS: We performed a retrospective study including 59 ocrelizumab (OCR)-treated patients with MS who received SARS-CoV-2 vaccination. Anti-SARS-CoV-2-antibody titres, routine blood parameters and peripheral immune cell profiles were measured prior to the first (baseline) and at a median of 4 weeks after the second vaccine dose (follow-up). Moreover, the SARS-CoV-2-specific T cell response and peripheral B cell subsets were analysed at follow-up. Finally, vaccination-related adverse events were assessed. RESULTS: After vaccination, we found anti-SARS-CoV-2(S) antibodies in 27.1% and a SARS-CoV-2-specific T cell response in 92.7% of MS cases. T cell-mediated interferon (IFN)-γ release was more pronounced in patients without anti-SARS-CoV-2(S) antibodies. Antibody titres positively correlated with peripheral B cell counts, time since last infusion and total IgM levels. They negatively correlated with the number of previous infusion cycles. Peripheral plasma cells were increased in antibody-positive patients. A positive correlation between T cell response and peripheral lymphocyte counts was observed. Moreover, IFN-γ release was negatively correlated with the time since the last infusion. CONCLUSION: In OCR-treated patients with MS, the humoral immune response to SARS-CoV-2 vaccination is attenuated while the T cell response is preserved. However, it is still unclear whether T or B cell-mediated immunity is required for effective clinical protection. Nonetheless, given the long-lasting clinical effects of OCR, monitoring of peripheral B cell counts could facilitate individualised treatment regimens and might be used to identify the optimal time to vaccinate.


Subject(s)
COVID-19 , Multiple Sclerosis , Viral Vaccines , Antibodies, Monoclonal, Humanized , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Humans , Immunity , Multiple Sclerosis/drug therapy , Retrospective Studies , SARS-CoV-2 , Vaccination
3.
Front Immunol ; 12: 747143, 2021.
Article in English | MEDLINE | ID: covidwho-1497080

ABSTRACT

Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.


Subject(s)
Autoimmune Diseases/immunology , Autoimmune Diseases/microbiology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/microbiology , T-Lymphocytes, Regulatory/immunology , Animals , Humans , Persistent Infection/immunology
SELECTION OF CITATIONS
SEARCH DETAIL